scholarly journals Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus

1999 ◽  
Vol 42 (8) ◽  
pp. 1644-1648 ◽  
Author(s):  
Mitsuteru Akahoshi ◽  
Hitoshi Nakashima ◽  
Yosuke Tanaka ◽  
Tsutomu Kohsaka ◽  
Shuji Nagano ◽  
...  
Rheumatology ◽  
2009 ◽  
Vol 48 (12) ◽  
pp. 1491-1497 ◽  
Author(s):  
B. C.-H. Kwan ◽  
L.-S. Tam ◽  
K.-B. Lai ◽  
F. M.-M. Lai ◽  
E. K.-M. Li ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Alessia Alunno ◽  
Elena Bartoloni ◽  
Onelia Bistoni ◽  
Giuseppe Nocentini ◽  
Simona Ronchetti ◽  
...  

Pathogenic mechanisms underlying the development of systemic lupus erythematosus (SLE) are very complex and not yet entirely clarified. However, the pivotal role of T lymphocytes in the induction and perpetuation of aberrant immune response is well established. Among T cells, IL-17 producing T helper (Th17) cells and regulatory T (Treg) cells represent an intriguing issue to be addressed in SLE pathogenesis, since an imbalance between the two subsets has been observed in the course of the disease. Treg cells appear to be impaired and therefore unable to counteract autoreactive T lymphocytes. Conversely, Th17 cells accumulate in target organs contributing to local IL-17 production and eventually tissue damage. In this setting, targeting Treg/Th17 balance for therapeutic purposes may represent an intriguing and useful tool for SLE treatment in the next future. In this paper, the current knowledge about Treg and Th17 cells interplay in SLE will be discussed.


2012 ◽  
Vol 209 (3) ◽  
pp. 581-596 ◽  
Author(s):  
Partha S. Biswas ◽  
Sanjay Gupta ◽  
Roslynn A. Stirzaker ◽  
Varsha Kumar ◽  
Rolf Jessberger ◽  
...  

Effective humoral responses to protein antigens require the precise execution of carefully timed differentiation programs in both T and B cell compartments. Disturbances in this process underlie the pathogenesis of many autoimmune disorders, including systemic lupus erythematosus (SLE). Interferon regulatory factor 4 (IRF4) is induced upon the activation of T and B cells and serves critical functions. In CD4+ T helper cells, IRF4 plays an essential role in the regulation of IL-21 production, whereas in B cells it controls class switch recombination and plasma cell differentiation. IRF4 function in T helper cells can be modulated by its interaction with regulatory protein DEF6, a molecule that shares a high degree of homology with only one other protein, SWAP-70. Here, we demonstrate that on a C57BL/6 background the absence of both DEF6 and SWAP-70 leads to the development of a lupus-like disease in female mice, marked by simultaneous deregulation of CD4+ T cell IL-21 production and increased IL-21 B cell responsiveness. We furthermore show that DEF6 and SWAP-70 are differentially used at distinct stages of B cell differentiation to selectively control the ability of IRF4 to regulate IL-21 responsiveness in a stage-specific manner. Collectively, these data provide novel insights into the mechanisms that normally couple and coordinately regulate T and B cell responses to ensure tight control of productive T–B cell interactions.


Sign in / Sign up

Export Citation Format

Share Document